# Roper Construction, Inc.

Air Quality Permit Application
No. 9295



# **Direct Testimony**

Roper's Permit

How A Concrete Batch Plant Operates

**Emission Control Equipment** 

Roper's Emissions

**Facility Modeling** 



### Roper's Permit

- > Roper is applying for an NSR Minor Source Permit under 20.2.72 NMAC
- Application was submitted June 14, 2021 and ruled administratively complete on July 22, 2021
- > 125 cubic yard per hour concrete batch plant with annual production limited to 500,000 cubic yards per year



### Facility Emission Sources and Control Equipment

|   | Unit No.   | Source Description                                                                    | Control Device                                               | Permitted Capacity       |  |
|---|------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------|--|
|   | 1          | Haul Road                                                                             |                                                              | 305 trips/day            |  |
|   | 2          | Feeder Hopper                                                                         |                                                              | 187.5 tph                |  |
|   | 3          | Feeder Hopper Conveyor                                                                | 3b - Wet Dust Suppression System, Controlling PM10 and PM2.5 | 187.5 tph                |  |
|   | 4          | Overhead Aggregate Bins (4)                                                           | 4b - Wet Dust Suppression System, Controlling PM10 and PM2.5 | 187.5 tph                |  |
|   | 5          | Aggregate Weigh Batcher  5b - Wet Dust Suppression System, Controlling PM10 and PM2.5 |                                                              | 187.5 tph                |  |
|   | 6          | Aggregate Weigh Conveyor                                                              | 6b - Wet Dust Suppression System, Controlling PM10 and PM2.5 | 187.5 tph                |  |
|   | 7          | Truck Loading with Baghouse                                                           | 7b - Baghouse                                                | 125 cubic yards per hour |  |
|   | 8          | Cement/Fly Ash Weigh Batcher                                                          | Controlling PM10 and PM2.5                                   | 38.8 tph                 |  |
|   | 9          | Cement Split Silo                                                                     | 9b - Baghouse<br>Controlling PM10 and PM2.5                  | 30.6 tph                 |  |
|   | 10         | Fly Ash Split Silo                                                                    | 10b - Baghouse Controlling PM10 and PM2.5                    | 8.25 tph                 |  |
| \ | 11         | Aggregate/Sand Storage Piles                                                          |                                                              | 187.5 tph                |  |
|   | 12, 13, 14 | Concrete Batch Plant Heaters (3 in total)                                             |                                                              | 0.6 MMBtu/hr (total)     |  |







(Roper Exhibit 3 at 19)

### Central Dust Collection System







Silo Baghouse



MONTROSE

AIR QUALITY SERVICES

Air Permit Application, Section 7

# Fugitive Dust Suppression

**Increasing Moisture Content by either:** 

**Wet Dust Suppression System** 

or

Additional Moisture at Aggregate Storage Piles

**Draft Permit Condition A502** 





### Permit Allowable Emission Rates

| Pollutant                                      | Emissions (tons per year) |
|------------------------------------------------|---------------------------|
| Nitrogen Oxides (NOx)                          | 0.3                       |
| Carbon Monoxide (CO)                           | 0.2                       |
| Volatile Organic Compounds (VOC)               | 0.03                      |
| Sulfur Dioxide (SO2)                           | 0.003                     |
| Particulate Matter 10 microns or less (PM10)   | 1.7                       |
| Particulate Matter 2.5 microns or less (PM2.5) | 0.3                       |

| Potential Emission Rate for Hazardous Air Pollutants (HAPs) | Emissions (tons per year) |
|-------------------------------------------------------------|---------------------------|
| Total HAPs                                                  | <1.0                      |

Emission rates were determined using AP-42 emission factors for this type of facility.

**Ambient Impact Analysis** 

| Pollutant         | Model<br>Averaging<br>Period | Ambient<br>Standard<br>(ug/m3) (1) | SIL (ug/m3) (2) | PSD Increment<br>(ug/m3) | Facility<br>Contribution<br>(ug/m3) | Cumulative<br>Contribution<br>(ug/m3) (3) | % of Criteria     |
|-------------------|------------------------------|------------------------------------|-----------------|--------------------------|-------------------------------------|-------------------------------------------|-------------------|
| NO2               | Annual                       | 94.0                               | 1.0             | -                        | 0.87                                | -                                         | SIL - 87%         |
| NO2               | 1-Hour                       | 188.03                             | 7.52            | -                        | 20.8                                | 59.5                                      | NAAQS - 31.6%     |
| PSD Class I NO2   | Annual                       | -                                  | 0.1             | 2.5                      | 0.0046                              | -                                         | SIL - 4.6%        |
| PSD Class II NO2  | Annual                       | -                                  | 1.0             | 25                       | 0.87                                | -                                         | SIL - 87%         |
| СО                | 8-Hour                       | 9960.1                             | 500             | -                        | 12.8                                | -                                         | SIL - 2.6%        |
| CO                | 1-Hour                       | 14997.5                            | 2000            | -                        | 50.5                                | -                                         | SIL - 2.5%        |
| SO2               | Annual                       | 52.4                               | 1.0             | 2                        | 0.01                                | -                                         | SIL - 1.0%        |
| SO2               | 24-Hour                      | 261.9                              | 5.0             | 5                        | 0.07                                | -                                         | SIL - 1.4%        |
| SO2               | 3-Hour                       | 1309.3                             | 25.0            | 25                       | 0.24                                | -                                         | SIL - 1.0%        |
| SO2               | 1-Hour                       | 196.4                              | 7.8             | -                        | 0.64                                | -                                         | SIL - 8.2%        |
| PM 2.5            | Annual                       | 12.0                               | 0.2             | 1                        | 2.01                                | 7.25                                      | NAAQS - 60.4%     |
| PM 2.5            | 24-Hour                      | 35.0                               | 1.2             | 2                        | 3.9                                 | 19.0                                      | NAAQS - 54.3%     |
| PM 10             | 24-Hour                      | 150.0                              | 5.0             | -                        | 29.7                                | 124.6                                     | NAAQS - 83.1%     |
| PSD Class I PM10  | 24-Hour                      | -                                  | 0.3             | 8                        | 0.23                                | 0.64                                      | Increment - 8.0%  |
| PSD Class I PM10  | Annual                       | -                                  | 0.2             | 4                        | 0.018                               | -                                         | SIL - 9.0%        |
| PSD Class II PM10 | 24-Hour                      | -                                  | 5.0             | 30                       | 29.7                                | 29.8                                      | Increment - 99.3% |
| PSD Class II PM10 | Annual                       | -                                  | 1.0             | 17                       | 11.8                                | 11.9                                      | Increment - 70.0% |

<sup>1-</sup> Lowest Applicable Standard for either NMAAQS or EPA NAAQS

<sup>2-</sup> NMED refers to this as a "Significance Level"

<sup>3-</sup> Cumulative Contribution equals Facility contribution + background contribution + neighboring sources

## **Facility Dispersion Modeling**

- Prior to Modeling, consulted with NMED Modeling Section on Meteorological Data
- Modeling Protocol submitted to NMED on April 29, 2021
- Fugitive dust sources were input as volume sources per NMED source inputs
- > Point Sources (Water Heaters) were input as point sources
- Dispersion Model was run using the most recent available AERMOD version
- Facility Impacts Below all New Mexico and Federal Ambient Air Quality Standards
- > Facility Below all Class I and Class II PSD Increment Limits

### Meteorological Data Set

- > Holloman Air Force Base Surface Data
- Santa Teresa Upper Air Data
- > 5 Years 2016 through 2020
- The Most Recent Available Update of AERMET Used
- > Significant Calm and Low Wind Speeds





Note: Diagram of the frequency of occurrence of each wind direction.

Met File Type: AERMET SFC File: HOLLOMAN2016\_2020.SFC

#### Roper CBP Met Data 2016- 2020 Windrose

Station No. 23002 HOLLOMAN AFB AIRPORT, NM Period: 1/1/2016 - 12/31/2020



### Conclusions

- > The Application Demonstrates Compliance with the applicable regulations, NAAQS, and PSD Increments
- NMED proposed additional conditions to the permit, including additional monitoring and recordkeeping requirements.
- > Even though the facility, as proposed, meets applicable requirements, the additional permit conditions proposed by the NMED are accepted by Roper.



# Rebuttal Testimony

### Meteorological Data Set

- Consulted with NMED Modeling Section on the appropriate meteorological data set
- ➤ I created and re-ran the models using the Sierra Blanca Meteorological Data and it resulted in lower cumulative concentrations for all pollutants
  - ➤ The Sierra Blanca data set does not meet EPA's requirement of a 90% complete data base before substitution<sup>(1)</sup>
- Using Holloman data resulted in higher modeled concentrations, therefore is more conservative
- (Sonterra SOI, Villarreal Opinion A)

(1) EPA Meteorological Monitoring Guidance for Regulatory Modeling Applications, Section 5.3.2





Note: Diagram of the frequency of occurrence of each wind direction.

Met File Type: AERMET SFC File: RUIDOSO2016\_2020.SFC

#### Sierra Blanca 2016- 2020 Windrose

Station No. 93083 SIERRA BLANCA RGNL AIRPORT, NM Period: 1/1/2016 - 12/31/2020

### AERMET & AERMOD 19191 versus 21112

- I ran the modeling for this facility prior to the availability of Version 21112 for AERMET and AERMOD
- The updates to AERMET and AERMOD Version 21112 did not change anything that would have an impact on the facility modeling results.
- > I re-ran the meteorological data in the updated Version 21112 AERMET
- > I then re-ran the models in AERMET and AERMOD Versions 21112 and it did not result in any changes in modeled concentrations

(Sonterra SOI, Villarreal Opinion B; Bernal Opinion B)

### Haul Road Trips

- Modeling was performed for the facility operating at the maximum production rate of 125 cubic yards per hour.
- Draft Permit Condition A112 permits 305 round truck trips per day.
- > This condition does not discriminate between the types of haul road trips
  - Water, product delivery, and raw material trips are included, and all treated the same in the daily count

(Sonterra SOI, Villareal Opinion C, Martinez Opinion C)

### Particle Density Sizes

- All particle density sizes used were NMED approved values
- Lime (3.3 g/cm3) was incorrectly used as a particle density for cement (2.85 g/cm3)
  - ► The use of the higher lime particle density resulted in higher concentrations at the boundary, a more conservative result.
  - ► A re-run of the models for PM-10, with the correct particle density, confirmed the modeled concentration decreased slightly

(Sonterra SOI Villarreal Opinion F, Bernal Opinion H)

## Fugitive Dust Emissions - Aggregate Piles

- For calculations, no controls were applied for both the controlled and uncontrolled hourly emission rates. The <u>uncontrolled</u> emission rates were used in the modeling analysis
- Modeling with <u>uncontrolled</u> aggregate piles demonstrated compliance with applicable regulations and standards
- NMED has proposed the option of adding additional moisture content at either the aggregate storage pile or at the unloading of the feed hopper in Draft Permit Condition A502
- Additional moisture added to the aggregate storage piles will reduce emissions even further than what was originally modeled
- (Sonterra SOI Edler Opinion C)